Decoding the human genome.
نویسنده
چکیده
Interpreting the human genome sequence is one of the major scientific endeavors of our time. In February 2001, when the human genome reference sequence was initially released (Lander et al. 2001), our understanding of the encoded contents was surprisingly limited. It was perplexing to many in the scientific community when we realized that the human genome contains only ;21,000 distinct protein-coding genes (Claverie 2001; Hollon 2001; Pennisi 2003; Clamp et al. 2007), as other less complex species like the nematode Caenorhabditis elegans were known to have a similar number of protein-coding genes (Hillier et al. 2005). It quickly became apparent that the developmental and physiological complexity of humanswould not be explained solely by the number of protein-coding genes, and the quest to understand the contents of the human genome began full force. The Encyclopedia of DNA Elements (ENCODE) Project was launched in September of 2003 with the daunting task of identifying all the functional elements encoded in the human genome sequence. To accomplish this task, the National Human Genome Research Institute (NHGRI) organized The ENCODE Project Consortium,which consists of an international group of scientists with diverse expertise in experimental and computational methods for generating and analyzing high-throughput genomic data (The ENCODE Project Consortium 2004). During the initial four years, the consortium conducted a pilot project which focused on annotating functional elements in a defined 1% of the human genome consisting of ;30 Mb divided among 44 genomic regions. On June 14, 2007, a report summarizing the findings of the pilot project revealed pervasive transcription of the human genome, with the majority of nucleotides represented in transcripts in at least a limited number of cell types at some time (The ENCODE Project Consortium 2007). Many of these transcripts comprised novel noncoding RNA genes. Importantly, The ENCODE Pilot Project assigned function to 60% of the evolutionarily constrained bases in the 44 genomic regions and identified many additional functional elements seemingly unconstrained across mammalian evolution. Integration of the various experimental data generated by The ENCODE Pilot Project provided further insights into connections between chromatin structure (modifications and accessibility) and gene expression (The ENCODE Project Consortium 2007; Koch et al. 2007; Thurman et al. 2007; Zhang et al. 2007) and the timing of replication (Karnani et al. 2007). Armed with increased knowledge about the types of functional elements contained within the human genome sequence and with the advent of massively parallel sequencing, in 2007 the ENCODE project was expanded to study the entire human genome. This month, Nature published a paper entitled ‘‘An integrated encyclopedia of DNA elements in the human genome,’’ which reports the production and initial analysis of 1640 data sets focused on two major classes of annotations: genes (both coding and noncoding) along with their corresponding RNA transcripts, and transcriptional regulatory regions. This paper (The ENCODE Project Consortium 2012), along with companion papers in Nature, Genome Research, and Genome Biology, provides much more than a mere inventory of sequence elements but rather presents an integrated analysis providing important insights into the functional organization of the human genome. In alignment with the tradition of large consortia sponsored by theNHGRI, the ENCODEproject has made all data and derived results available through a freely accessible database (Rosenbloom et al. 2010). The following sections describe some of the highlights of the ENCODE project, including technical accomplishments, high quality data sets, and integrated analyses with other resources, such as disease-associated variants identified through genome-wide association studies.
منابع مشابه
O-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملI-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملComdined Turbo Block Decoding and Equalisation
In this paper, the combination of equalization and turbo decoding is studied. In the iterative decoding of a product code in block turbo coding system, the equalization process is performed within the iteration loop. The present study aims to investigate the decision feedback equalizer (DFE) incorporated in the iterative decoding. Simulation results show that the more severe the channel interfe...
متن کاملMicroRNAs as Immune Regulators of Inflammation in Children with Epilepsy
Epilepsy is a chronic clinical syndrome of brain function which is caused by abnormal discharge of neurons. MicroRNAs (MiRNAs) are small noncoding RNAs which act post transcriptionally to regulate negatively protein levels. They affect neuroinflammatory signaling, glial and neuronal structure and function, neurogenesis, cell death, and other processes linked to epileptogenesis. The aim of this ...
متن کاملI-38: Chromosome Instability in The Cleavage Stage Embryo
Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...
متن کاملComdined Turbo Block Decoding and Equalisation
In this paper, the combination of equalization and turbo decoding is studied. In the iterative decoding of a product code in block turbo coding system, the equalization process is performed within the iteration loop. The present study aims to investigate the decision feedback equalizer (DFE) incorporated in the iterative decoding. Simulation results show that the more severe the channel interfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2012